

Heat Recovery in Supermarkets and Industry

Torben Funder-Kristensen

Excess heat feeding into the district heating network

The calculation methodoligies are used on a Supermarket case and a Brickyard

Figure 5: Schematic illustration of feed-in of excess heat to a district heating grid

Final energy savings at end customers:

$$TFES = Q_{EH} \cdot (1 - HL_{DHG}) \cdot \left(\frac{1}{eff_{Baseline}} - \frac{1}{eff_{Action}}\right) \cdot (1 - f_{ei}) \cdot (1 - f_{BEH})$$

TFES	Total final energy savings [kWh/a]
Q _{EH}	Excess heat fed into the district heating grid [kWh/a]
HLDHG	Heat losses in the district heating grid [dmnl]
eff _{Baseline}	Conversion efficiency of the reference heating systems [dmnl]
eff _{Action}	Conversion efficiency of the district heat consuming heating systems [dmnI]
f _{ei}	Factor to calculate extrinsic incentives [dmnl]
f _{BEH}	Factor to calculate rebound effects [dmnl]

Effect on primary energy consumption at end customers:

 $EPEC = Q_{EH} \cdot (1 - HL_{DHG}) \cdot f_{PE}$

EPEC	Effect on primary energy consumption [kWh/a]
Q _{EH}	Excess heat fed into the district heating grid [kWh/a]
HLDHG	Heat losses in the district heating grid [dmnl]
f _{PE}	Primary energy factor of the reference heating system [dmnl]

The outline of a 'prosumer' supermarket in Denmark

The EU perspective of aggregating Supermarkets

Specific state of the art Case

SuperBrugsen in city of Augustenborg:

- All internal heating demands are covered and the heating bill reduced from 13.500 to 1.350 €/a
- 15 family dwellings are additionally heated by DH with heat from the supermarket

Brickyards are obvious sources of Excess Heat

- Situated in Graasten Denmark
- MW of (gas fired) heat consumed for owens and to dry the bricks
- District Heating will be connected to the facility in 2024
- DH feed of heat usage from flue gas and air compressors
- Most recovered heat needs upgrading from heat pumps

Heat recovery from this brickyard is equivalent to the potential of 20 supermakets

Principles for heat recovery

